Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Deliv Transl Res ; 14(2): 474-490, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37605039

RESUMO

Atherosclerosis is an inflammatory disease characterized by the accumulation of arterial plaque. Diabetes mellitus stands out as a major risk factor for atherosclerosis. Candesartan is a potent angiotensin II receptor antagonist that enhances arterial blood flow and reduces insulin resistance. However, oral candesartan has limited activity because of its low bioavailability, water solubility, hepatic first-pass degradation, and efficacy. The current study aims to develop nasal candesartan-loaded invasome (CLI) drops to improve candesartan's permeation, release, and bioavailability as a potential treatment for diabetes-associated atherosclerosis. Design expert software was used to prepare various CLI formulations to determine the impact of the concentrations of ethanol, cineole, and phospholipid. The desirability index was used to estimate the optimized formulation composition to maximize entrapment efficiency and minimize vesicle size. The optimized formulation had a 1% ethanol concentration, a 1.5% cineole concentration, and a 2.32% phospholipid concentration. The selected optimized formulation was then tested in a rat model of diabetes and atherosclerosis to evaluate its activity. The results showed that nasal CLI drops significantly raised serum HDL levels by a ratio of 1.42 and lowered serum glucose, cholesterol, triglycerides, LDL, and VLDL levels by 69.70%, 72.22%, 36.52%, 58.0%, and 65.31%, respectively, compared with diabetic atherosclerotic rats, throwing an insight on the potential for promising anti-diabetic and anti-atherosclerotic activities. Additionally, atherosclerotic lesions were improved in rats treated with CLI, as shown in histopathology. In conclusion, the results of this investigation showed that treatment with nasal CSN-loaded invasome formulation drops prevented the initiation and progression of diabetes-associated atherosclerosis.


Assuntos
Aterosclerose , Diabetes Mellitus , Ratos , Animais , Eucaliptol , Aterosclerose/tratamento farmacológico , Fosfolipídeos , Etanol
2.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36145327

RESUMO

The oral delivery of diclofenac sodium (DNa), a non-steroidal analgesic, anti-inflammatory drug, is associated with various gastrointestinal side effects. The aim of the research was to appraise the potential of transdermal delivery of DNa using bilosomes as a vesicular carrier (BSVC) in inflamed paw edema. DNa-BSVCs were elaborated using a thin-film hydration technique and optimized using a 31.22 multilevel categoric design with Design Expert® software 10 software (Stat-Ease, Inc., Minneapolis, MI, USA). The effect of formulation variables on the physicochemical properties of BSVC, as well as the optimal formulation selection, was investigated. The BSVCs were evaluated for various parameters including entrapment efficiency (EE%), vesicle size (VS), zeta potential (ZP) and permeation studies. The optimized BSVC was characterized for in vitro release, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and incorporated into hydrogel base. The optimized DNa-BSVC gel effectiveness was assessed in vivo using carrageenan-induced paw edema animal model via cyclooxygenase 2 (COX-2), interleukin 6 (IL-6), Hemooxygenase 1 (HO-1) and nuclear factor-erythroid factor2-related factor 2 (Nfr-2) that potentiate anti-inflammatory and anti-oxidant activity coupled with histopathological investigation. The resulting vesicles presented VS from 120.4 ± 0.65 to 780.4 ± 0.99 nm, EE% from 61.7 ± 3.44 to 93.2 ± 2.21%, ZP from -23.8 ± 2.65 to -82.1 ± 12.63 mV and permeation from 582.9 ± 32.14 to 1350.2 ± 45.41 µg/cm2. The optimized BSVCs were nano-scaled spherical vesicles with non-overlapped bands of their constituents in the FTIR. Optimized formulation has superior skin permeability ex vivo approximately 2.5 times greater than DNa solution. Furthermore, histological investigation discovered that the formed BSVC had no skin irritating properties. It was found that DNa-BSVC gel suppressed changes in oxidative inflammatory mediators (COX-2), IL-6 and consequently enhanced Nrf2 and HO-1 levels. Moreover, reduction of percent of paw edema by about three-folds confirmed histopathological alterations. The results revealed that the optimized DNa-BSVC could be a promising transdermal drug delivery system to boost anti-inflammatory efficacy of DNa by enhancing the skin permeation of DNa and suppressing the inflammation of rat paw edema.

3.
Pharmaceutics ; 14(8)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35893792

RESUMO

Peripheral nerve injuries significantly impact patients' quality of life and poor functional recovery. Chitosan-ufasomes (CTS-UFAs) exhibit biomimetic features, making them a viable choice for developing novel transdermal delivery for neural repair. This study aimed to investigate the role of CTS-UFAs loaded with the propranolol HCl (PRO) as a model drug in enhancing sciatica in cisplatin-induced sciatic nerve damage in rats. Hence, PRO-UFAs were primed, embedding either span 20 or 60 together with oleic acid and cholesterol using a thin-film hydration process based on full factorial design (24). The influence of formulation factors on UFAs' physicochemical characteristics and the optimum formulation selection were investigated using Design-Expert® software. Based on the optimal UFA formulation, PRO-CTS-UFAs were constructed and characterized using transmission electron microscopy, stability studies, and ex vivo permeation. In vivo trials on rats with a sciatic nerve injury tested the efficacy of PRO-CTS-UFA and PRO-UFA transdermal hydrogels, PRO solution, compared to normal rats. Additionally, oxidative stress and specific apoptotic biomarkers were assessed, supported by a sciatic nerve histopathological study. PRO-UFAs and PRO-CTS-UFAs disclosed entrapment efficiency of 82.72 ± 2.33% and 85.32 ± 2.65%, a particle size of 317.22 ± 6.43 and 336.12 ± 4.9 nm, ζ potential of -62.06 ± 0.07 and 65.24 ± 0.10 mV, and accumulatively released 70.95 ± 8.14% and 64.03 ± 1.9% PRO within 6 h, respectively. Moreover, PRO-CTS-UFAs significantly restored sciatic nerve structure, inhibited the cisplatin-dependent increase in peripheral myelin 22 gene expression and MDA levels, and further re-established sciatic nerve GSH and CAT content. Furthermore, they elicited MBP re-expression, BCL-2 mild expression, and inhibited TNF-α expression. Briefly, our findings proposed that CTS-UFAs are promising to enhance PRO transdermal delivery to manage sciatic nerve damage.

4.
AAPS PharmSciTech ; 21(3): 113, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32291553

RESUMO

The aim of this was to develop a well-balanced, replaceable, and patient non-infringing innovative transdermal drug delivery system "nano-vesicle transdermal gel" (NVTG) approaches for inhibiting inflammation. To consummate this objective, we developed a skin permeation nanogel system containing surface active agent along with ethanol. Carbopol 971p, hydroxypropyl methyl cellulose (HPMC K15M), and chitosan were used to fabricate the nanogels. The nanogel system was evaluated for pH, content uniformity, spreadability, rheological studies, in vitro skin permeation, and drug release. Carbapol 971p with the desired in vitro skin permeation was utilized to investigate skin irritation test and effects on inflammation using acute inflammatory paw edema models. Moreover, in vivo pharmacokinetic study was assessed. pH of this nanogels was found within the range of 6.1-7.2, whereas the viscosity was found 310.13 to 6361 cps. The ex vivo skin permeation gels showed permeation flux range, 5.9 ± 0.80 to 17.92 ± 1.13 µg/cm2 h. The highest permeation flux (17.92 ± 1.13 µg/cm2 h) was observed, which was 3.14-folds higher than that of the plain DH gel (10.72 ± 0.84 µg/cm2 h. Additionally, from toxicological study, no obvious signs of toxicity such as skin irritation (of laboratory rats) were identified. The in vivo anti-inflammatory behavior in carrageenan-induced rats showed comparatively higher inhibition of rat paw edema swelling by the prepared nanogel compared to that of the plain DH gel and marketed ibuprofen over 6 h. The amount of drug accumulated in the skin after topical application was much higher than oral application. In conclusion, developed NVTG formulation loaded with dapoxetine HCl (DH) offers new opportunities for creating novel therapeutic modality for inflammation patients with fewer adverse effects.


Assuntos
Anti-Inflamatórios/administração & dosagem , Benzilaminas/administração & dosagem , Sistemas de Liberação de Medicamentos , Edema/tratamento farmacológico , Naftalenos/administração & dosagem , Administração Cutânea , Animais , Carragenina/farmacologia , Feminino , Géis , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...